Shortcuts With Chained Probabilities

February 17th, 2021
math
Let's say you're considering an activity with a risk of death of one in a million. If you do it twice, is your risk two in a million?

Technically, it's just under:

1 - (1 - 1/1,000,000)^2 = ~2/1,000,001
This is quite close! Approximating 1 - (1-p)^2 as p*2 was only off by 0.00005%.

On the other hand, say you roll a die twice looking for a 1:

1 - (1 - 1/6)^2 = ~31%
The approximation would have given:
1/6 * 2 = ~33%
Which is off by 8%. And if we flip a coin looking for a tails:
1/2 * 2 = 100%
Which is clearly wrong since you could get heads twice in a row.

It seems like this shortcut is better for small probabilities; why?

If something has probability p, then the chance of it happening at least once in two independent tries is:

1 - (1-p)^2
 = 1 - (1 - 2p + p^2)
 = 1 - 1 + 2p - p^2
 = 2p - p^2
If p is very small, then p^2 is negligible, and 2p is only a very slight overestimate. As it gets larger, however, skipping it becomes more of a problem.

This is the calculation that people do when adding micromorts: you can't die from the same thing multiple times, but your chance of death stays low enough that the inaccuracy of naively combining these probabilities is much smaller than the margin of error on our estimates.

Referenced in: Peekskill Lyme Incidence

Comment via: facebook, lesswrong

Recent posts on blogs I like:

Book Review: The Kingdom, The Power, and the Glory

Against the Internet

via Thing of Things April 25, 2025

Impact, agency, and taste

understand + work backwards from the root goal • don’t rely too much on permission or encouragement • make success inevitable • find your angle • think real hard • reflect on your thinking

via benkuhn.net April 19, 2025

Which Came First, the Chicken or the Egg?

When I thought about this question it was really hard to figure out because the way it's phrased it's essentially either a chicken just pops into existence, or an egg just pops into existence, without any parent animals involved. I thought about t…

via Lily Wise's Blog Posts April 13, 2025

more     (via openring)