Shortcuts With Chained Probabilities

February 17th, 2021
math
Let's say you're considering an activity with a risk of death of one in a million. If you do it twice, is your risk two in a million?

Technically, it's just under:

1 - (1 - 1/1,000,000)^2 = ~2/1,000,001
This is quite close! Approximating 1 - (1-p)^2 as p*2 was only off by 0.00005%.

On the other hand, say you roll a die twice looking for a 1:

1 - (1 - 1/6)^2 = ~31%
The approximation would have given:
1/6 * 2 = ~33%
Which is off by 8%. And if we flip a coin looking for a tails:
1/2 * 2 = 100%
Which is clearly wrong since you could get heads twice in a row.

It seems like this shortcut is better for small probabilities; why?

If something has probability p, then the chance of it happening at least once in two independent tries is:

1 - (1-p)^2
 = 1 - (1 - 2p + p^2)
 = 1 - 1 + 2p - p^2
 = 2p - p^2
If p is very small, then p^2 is negligible, and 2p is only a very slight overestimate. As it gets larger, however, skipping it becomes more of a problem.

This is the calculation that people do when adding micromorts: you can't die from the same thing multiple times, but your chance of death stays low enough that the inaccuracy of naively combining these probabilities is much smaller than the margin of error on our estimates.

Referenced in: Peekskill Lyme Incidence

Comment via: facebook, lesswrong

Recent posts on blogs I like:

Jealousy In Polyamory Isn't A Big Problem And I'm Tired Of Being Gaslit By Big Self-Help

The nuance is in the post, guys

via Thing of Things July 18, 2024

Trust as a bottleneck to growing teams quickly

non-trust is reasonable • trust lets collaboration scale • symptoms of trust deficit • how to proactively build trust

via benkuhn.net July 13, 2024

Coaching kids as they learn to climb

Helping kids learn to climb things that are at the edge of their ability The post Coaching kids as they learn to climb appeared first on Otherwise.

via Otherwise July 10, 2024

more     (via openring)