Shortcuts With Chained Probabilities

February 17th, 2021
math
Let's say you're considering an activity with a risk of death of one in a million. If you do it twice, is your risk two in a million?

Technically, it's just under:

1 - (1 - 1/1,000,000)^2 = ~2/1,000,001
This is quite close! Approximating 1 - (1-p)^2 as p*2 was only off by 0.00005%.

On the other hand, say you roll a die twice looking for a 1:

1 - (1 - 1/6)^2 = ~31%
The approximation would have given:
1/6 * 2 = ~33%
Which is off by 8%. And if we flip a coin looking for a tails:
1/2 * 2 = 100%
Which is clearly wrong since you could get heads twice in a row.

It seems like this shortcut is better for small probabilities; why?

If something has probability p, then the chance of it happening at least once in two independent tries is:

1 - (1-p)^2
 = 1 - (1 - 2p + p^2)
 = 1 - 1 + 2p - p^2
 = 2p - p^2
If p is very small, then p^2 is negligible, and 2p is only a very slight overestimate. As it gets larger, however, skipping it becomes more of a problem.

This is the calculation that people do when adding micromorts: you can't die from the same thing multiple times, but your chance of death stays low enough that the inaccuracy of naively combining these probabilities is much smaller than the margin of error on our estimates.

Referenced in: Peekskill Lyme Incidence

Comment via: facebook, lesswrong

Recent posts on blogs I like:

Linkpost for October

Effective altruism, social justice, economics, society, health, criminal justice, short stories, fun.

via Thing of Things October 1, 2024

Startup advice targeting low and middle income countries

This post was inspired by a week of working from Ambitious Impact’s office in London, and chatting with several of the startup charities there. While my experience is in the for-profit world, I think it’s applicable to entrepreneurs working on impact-driv…

via Home September 27, 2024

Advice for getting along with your kids

Lessons learned from the first 10 years The post Advice for getting along with your kids appeared first on Otherwise.

via Otherwise September 16, 2024

more     (via openring)