Decimal Inconsistency |
February 7th, 2015 |
ideas, math [html] |
First a summary. This is all based around the idea that you can have "0.9̅3" or "0.9̅4," and in fact "0.9̅3 < 0.9̅4". The first one is 0.999...3 while the latter is 0.999...4. Or "first you have nines forever, and then either a three or a four". Since 3 < 4, we should have 0.9̅3 < 0.9̅4. If this is confusing Ben's post goes into more detail.
(I'll note here that this isn't normal math. You can't add these, subtract them, multiply, etc. Normally 0.9̅ is exactly 1 and 0.9̅3 is meaningless. We're playing with some things that are kind of like numbers, but not entirely.)
Here are some properties it seems like these numbers should have, where x and y are infinite decimals and R is any of >, =, or <. To simplify writing in text we're writing 0.x̅y as (x)y.
- x R y → (x) R (y)
- x R y → xz R yz
- x R y → zx R zy
- x = x0
- x(x) = (x)
- (xy) = x(yx)
((x)x) = (x)(x(x)) by #6 = (x)((x)) by #5 = ((x)) by #5 so (x)x = (x) by #1 = (x)0 by #4 so x = 0 by #3 which is a contradiction.This seems right to me, but all of the axioms also seem reasonable. I'm not sure what you would drop to make this more reasonable.
Comment via: google plus, facebook