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Caenorhabditis elegans exhibits behavior plasticity that

appears to correspond to non-associative and associative

learning, and short-term and long-term memory. Recent finding

revealed that evolutionally conserved molecules such as

insulin, monoamines, and neuropeptides are required for the

plasticity. We propose the concept of human brain operation

from the C. elegans studies.
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Introduction
Learning and memory are fundamentalbiological properties

that appeared to be acquired in the early era of animal

evolution. Because of simple neuronal circuits and easy

access to experiments, invertebrates have played an import-

ant role in understanding the biological basis of learning and

memory. Studies on Aplysia and Hermissenda revealed the

essential mechanism of synaptic plasticity [1,2]. Similarly,

the behavioral molecular genetics in Drosophila and Caenor-
habditis elegans greatly advanced our knowledge on the

nervous system [3–5]. Invertebrate studies found neural

logic commonly used throughout evolution [1,4,6,7].

Much of neurotransmitters and neuronal modulators used

in C. elegans such as acetylcholine, glutamate, dopamine,

serotonin, GABA, and neuropeptides are amazingly

similar to those used in mammals [8]. Genome project

revealed that genes required for neuronal development

and function are also highly homologous to mammalian

genes [9,10]. Rapidly advanced technologies such as

calcium imaging and optogenetics are particularly acces-

sible to the C. elegans nervous system, thereby enabling

the worm researchers to extensively study dynamics of

neurons and circuits. Classical forward and reverse

genetics became much more powerful, with help of whole

genome sequencing and RNAi knockdown experiments.

These advantages of C. elegans allow comprehensive and
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high-resolution studies for understanding human brain

and neuronal disorders.

C. elegans apparently exhibits behaviors that reflect learn-

ing and memory (Figure 1) [11–19]. In this review, we

focus on some of the recent works on behavioral plasticity,

learning and memory in C. elegans.

Associative learning between salt and food
C. elegans eats bacteria as nutriment [5]. Presence or

absence of food is a determinant that largely affects

behavior of C. elegans. Hence, various behavioral strategies

had been evolved to obtain food effectively [11–22].

C. elegans exhibits chemotaxis to water-soluble attractant

NaCl that is sensed by ASE neurons. Two ASE neurons are

developmentally and functionally asymmetric: the ASER

preferentially detects Cl� and is stimulated by decreases in

NaCl concentration (OFF cell), while the ASEL prefer-

entially detects Na+ and is stimulated by increases in NaCl

concentration (ON cell) [16,23–25]. C. elegans subjected to

prolonged exposure to NaCl under starvation condition

showed a dramatic reduction of chemotaxis to NaCl and

eventually a negative chemotaxis against NaCl [26].

Exposure to NaCl in the presence of food does not lead

to a reduction of chemotaxis, suggesting that salt chemo-

taxis learning occurs between NaCl and starvation [26]. G-

protein, Ca2+, and cGMP pathway are involved in similar

gustatory plasticity [27,28].

Insulin/PI3-kinase pathway also regulates salt chemotaxis

plasticity. INS-1, an insulin-like peptide, is secreted from

AIA interneuron and feeds back to salt receptor neuron

ASER. INS-1 then activates phosphoinositide 3-kinase

(PI3K) pathway in ASER through insulin receptor DAF-

2, thereby modulating the neural activity of ASER,

further leading to determine the final orientation of salt

chemotaxis learning (Figure 2) [29].

CASY-1, an ortholog of calsyntenins (alcadeins) that is

associated with episodic memory performance in human,

is essential for salt chemotaxis learning [30��]. CASY-1 is a

transmembrane protein carrying two tandem cadherin

domains and LG/LNS domain in the ectodomain. The

expression of CASY-1 in ASER and the ectodomain

released by cleavage of CASY-1 are required for salt

chemotaxis learning (Figure 2) [30��].

HEN-1, a secreted protein with an LDL receptor motif

involved in integration processing between copper ion

and odorants, is also known to control salt chemotaxis

learning [31].
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Conceptual scheme for learning and memory-based plastic behavior. A

variety of behavioral plasticity is observed. Animals sense different

environmental stimuli through sensory system. Multi information is

processed and integrated in the nervous system. On the basis of learning

and memory, plasticity in behavior is generated. Photograph shows the C.

elegans head sensory neurons visualized with GFP. Cell bodies of sensory

neurons, such as olfactory, taste, and thermosensory neurons make

ganglia. They extend the dendrites to the tip of head and project axons to

the nerve ring where synaptic connections to other neurons are formed.
Associative learning between temperature
and food
C. elegans associates past cultivation temperature with

food. After animals were cultivated with food at a certain
Figure 2
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negatively regulates neuronal activity of ASER, thereby generating plasticity

cleaved and the ectodomain is released. Released ectodomain acts on eith
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temperature ranging from 158C to 258C and placed on

agar surface with a temperature gradient, they migrate

and move isothermally near the past cultivation tempera-

ture. When animals were recultivated at a new tempera-

ture with food for two to four hours, they migrate to that

new cultivation temperature [32]. Dynamic alternation of

temperature preference is also observed in the absence of

food. Cultivation without food at a certain temperature for

several hours induces animals to disperse or avoid the past

cultivation temperature [32–35]. The neural circuit that

critically regulates thermotaxis is quite simple and ideal

for dissecting neural plasticity (Figure 3) [18,22].

Molecular genetic analysis identified several molecules

required for food associated thermotactic plasticity. For

example, an ortholog of human calcineurin alpha subunit

TAX-6 is required in two pairs of interneuron, AIZ, and

RIA [36]. Similarly, a novel hydrolase AHO-3 is required

in AWC neurons for food associated thermotactic

plasticity [35]. A human homolog of AHO-3, FAM108B1

expressed in brain, restored the defect in aho-3 mutants,

which suggests that this novel type of hydrolase is func-

tionally conserved from C. elegans to human. Although the

role of AHO-3 remains to be further elucidated, palmi-

toylation of N-terminal cysteine cluster was found to be

essential for the food associated thermotactic plasticity.

Since ABHD12, an AHO-3 related protein in C. elegans
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 signaling and casy-1. Insulin-like peptide INS-1 is secreted from AIA

 insulin receptor DAF-2. DAF-2 activates PI3-kinase AGE-1 that converts

Ser/Thr kinases PDK-1 and AKT-1. Then, the activation of this pathway

 in salt chemotaxis [29]. CASY-1/Calsyntenins expressed in ASER is

er ASER itself or others to modulate salt chemotaxis learning [30].
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Figure 3
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Analogy between the thermotaxis neural circuit in C. elegans and human brain. In C. elegans, temperature is sensed and thermal information is stored

in AFD (and probably in AWC). Stored information is transmitted to the thermotaxis core interneurons AIY, AIZ, and RIA. Thermal information and food

state are integrated and processed in interneurons by monoamines and insulin to generate output behavior [18,22]. In human brain, working memory is

coded in cerebral cortex. The coded information is conveyed to basal ganglia, where learning and emotion proceed with modulation through

monoamines.
was suggested to hydrolyze endocannabinoid 2-arachido-

noylglycerolendocan, it is likely that AHO-3 hydrolyzes

some type of endocannabinoid [35].

The aho-2 mutant was isolated as severely defective

mutants in food associated thermotactic plasticity. The

aho-2 gene was identical to ins-1 gene, which encodes a

homolog of human insulin. INS-1 acts cell non-autonom-

ously, and antagonizes insulin receptor DAF-2 and its

downstream PI3-kinase AGE-1 in food associated ther-

motactic plasticity. The defects of age-1 mutants were

rescued by expressing age-1 gene in any of three inter-

neurons, AIY, AIZ or RIA, all of which are major com-

ponent neurons in the neural circuit for thermotaxis

(Figure 3) [37]. These results suggest that in contrast

to salt-food association where INS-1 acts to salt sensing

neuron ASE [29], INS-1 acts to interneurons of thermo-

taxis circuits. Consistent with the notion that integration

of food and temperature information occurs within inter-

neurons, the absence of food did not affect the response of

AFD thermosensory neurons [37].

Exogenous serotonin mimicked the presence of food,

whereas exogenous octopamine mimicked the absence

of food in food associated thermotactic plasticity [34].

This result suggests that the balanced regulation by two

monoamines in interneurons is a key process for the

thermotactic plasticity (Figure 3).
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Memory of temperature information
AFD functions as not only temperature-sensing neuron

but also a temperature memory device. The memory

function of AFD was revealed by Ca2+ imaging exper-

iments, where AFD neurons began to respond in warming

to a temperature that nearly corresponded to the cultiva-

tion temperature [38,39]. cAMP-response element bind-

ing protein (CREB) is a transcriptional factor that

regulates neural plasticity from invertebrates to mammals

[1]. The mutants in crh-1 gene encoding a C. elegans
homolog of CREB showed abnormal thermotaxis and

the expression of crh-1cDNA only in AFD almost com-

pletely rescued the defects [40]. CREB may be required

for memory in AFD or pre-synaptic plasticity in AFD.

Isothermal tracking near the past experienced tempera-

ture is suited to directly observe memory process

[18,32,33]. dgk-3 mutants lacking diacylglycerol kinase

DGK-3 showed poorer isothermal tracking. The expres-

sion of DGK-3 in AFD rescued the defect, suggesting

that DGK-3 mediated lipid signaling is important for

Isothermal tracking [41].

After temperature is received and assessed with memor-

ized temperature in AFD, thermal information is flowed

to AIY interneurons (Figure 3). The regulation of infor-

mation flow from AFD to AIY may be a critical step for

thermotactic plasticity, and recent works partly dissect

this regulation. eat-4 gene encodes a vesicular glutamate
www.sciencedirect.com
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transporter (VGLUT). EAT-4-dependent glutamatergic

transmission from AFD down-regulates the activity of

AIY through a glutamate-gated chloride channel GLC-3

[42��]. Besides EAT-4 mediated inhibitory signal, peptides

mediated excitatory signal from AFD to AIY is predicted

[43]. The balance between excitatory and inhibitory sig-

nals from AFD to AIY as well as the amplitude control of

both signals is important for allowing C. elegans to migrate

from low to high temperature [22,39,42–44].

Temperature is also sensed by non-neuronal body cells such

as intestine and bodywall muscle cells through heat shock

transcription factor HSF-1 [45�]. HSF-1 mediated thermo-

sensation cell non-autonomously regulates the activity of

AFD through estrogen signaling [45�] (Figure 3). Thus,

neurohormonal modulation of hard-wired neural circuits

also contributes to behavioral plasticity in C. elegans.

Pathogenic bacteria induce olfactory aversion
Some pathogenic bacteria proliferate in the intestine and

release toxin, resulting in death of the infected animal

after several days. To protect from pathogenic bacterial
Figure 4
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infection, C. elegans has behavioral strategy to judge food

quality and leave from pathogenic bacteria by associative

learning. While an odor of pathogenic bacteria attracts C.
elegans, actual contact with pathogenic bacterial for four

hours causes C. elegans to avoid them (Figure 4a–d) [46–48].

Prolonged exposure to pathogenic bacteria elevates sero-

tonin content in ADF chemosensory neuron. Serotonin

acts to a serotonin-gated chloride channel MOD-1 that is

expressed in AIZ and AIY interneurons and is a key

molecular basis for the plasticity [48]. Neuronal circuits

regulating the learned aversion to pathogenic bacteria have

been investigated [49�]. Olfactory sensory neurons AWB

and AWC with their downstream interneurons, AIY, AIZ,

and AIB, are needed for animals to display naı̈ve olfactory

preference to food. ADF serotonergic neurons with down-

stream interneurons and motorneurons, RIA, SMD, and

RIM, are required for associative learning to pathogenic

food. Interplay between these two neuronal pathways is

important for aversive olfactory learning [49�].

Recent studies showed that a neuropeptide Y receptor

and E3 ubiquitin ligase are required for pathogen
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tes on non-pathogenic bacteria OP50 (control growth plate) or on

m infection, OP50 is contained on training growth plate. (c) and (d) Two-

e index, whereas cultivation on PA14 showed negative choice index [48].

. Animals were transferred to plates containing a lawn of PA14. (f) PA14

nsfer. hecw-1 mutants showed the enhanced avoidance behavior. npr-1

he phenotype of npr-1 mutants [51��].
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avoidance behavior [50�,51��]. The npr-1 gene encodes a

G-protein-coupled receptor related to the mammalian

neuropeptide Y receptor. The 215V npr-1 allele in N2

(Bristol strain) causes increased NPR-1 activity relative to

the 215F allele in CB4856 (Hawaiian strain). The poly-

morphism of npr-1 gene results in many different food-

related behaviors, such as aggregation, aerotaxis, and

locomotion [15,52–54]. By spending more time on bac-

terial lawn, CB4856 strain and loss of function mutants of

npr-1 gene in Bristol strain receive an increased dose of

the pathogenic bacteria, leading to higher mortality [50�].
The long staying phenotype on pathogenic bacterial lawn

in the 215F npr-1 allele was suppressed by alleles of hecw-
1 gene that encodes conserved HECT domain-containing

E3 ubiquitin ligase. hecw-1 null mutants in Bristol strain

exhibited early leaving phenotype from pathogenic bac-

terial lawn (Figure 4e,f). The expression of hecw-1cDNA in

OLL neurons of hecw-1 null mutants was sufficient to

rescue early leaving phenotype, whereas laser-ablation of

OLLs neurons in wild type animals induced early leaving

phenotype. The function of HECT-1, E3 ubiquitin

ligase, in OLL neurons inhibits the pathogen avoidance

behavior through negative regulation of NPR-1(215F)

[51��].

The regulation of plasticity by monoamines
and peptides
Neuromodulators, monoamines, and peptides affect

many aspects of C. elegans behavior [11–17,20,21,55–
58]. A G-protein-coupled catecholamine receptor

TYRA-3 is activated by tyramine and octopamine, which

are equivalent to vertebrate epinephrine and norepi-

nephrine, respectively [59,60]. Octopamine affects loco-

motion, arousal and aggregation in invertebrates, and

norepinephrine is important for decision-making beha-

vior in mammals [61,62]. Different strains of C. elegans,
Bristol and Hawaiian, vary in their tendency to leave or

remain on a small lawn of bacterial food [52,63��]. Poly-

morphisms in noncoding region of tyra-3 gene cooperated

with polymorphisms in npr-1 gene, regulate whether C.
elegans leaves or remains on the food that is regarded as

decision-making behavior. Accordingly, catecholamines

seem to be ancient in origin in the modulation of beha-

vioral plasticity [63��].

After exposure to the odor in the absence of food, C.
elegans stops approaching to otherwise attractive odor and

disperse from it [64]. This olfactory plasticity is correlated

to the density of animals. The high density enhances

dispersion from the odor. C. elegans recognizes the density

of animals through crude pheromone [57]. When crude

pheromone was given, the expression of SNET-1, a

neuropeptide homologous to L11 peptide in Aplysia, is

down-regulated in ASI pheromone sensing neurons

[65��]. Consistently, the loss of SNET-1 enhanced and

overexpression of SNET-1 weakened the olfactory

plasticity, respectively. The nep-2 gene encoding an
Current Opinion in Neurobiology 2013, 23:92–99 
extracellular peptidase neprilysin negatively regulates

the snet-1 gene. These results suggest that population

density of animal is transmitted through the external

pheromone and endogenous peptide activity is a key

modulator for plastic behavior [65��].

Association of odorant and alkaline
Food is a strong unconditional stimulus (US) in any

conditioning paradigm, because any animal species

devoid of food cannot live and reproduce. Some studies

therefore avoided using food as US and instead used two

different chemical cues [66]. Recently, a new classic

conditioning with 1-propanol as CS and HCl (pH 4.0)

as US has been developed [67]. In this protocol, spaced

training consists of repeated training sessions with an

inter-trial interval (ITI), and massed training comprises

repeated trials without ITI. The memory after the spaced

training was retained for 24 hours, whereas the memory

after the massed training lasted only three hours. In

addition, C. elegans also possesses both long-term memory

and short-term memory like other organisms. C. elegans
mutants defective in nmr-1 encoding an NMDA receptor

subunit fail to form both long-term and short-term mem-

ory, while mutations in crh-1 encoding the CREB tran-

scription factor only affect long-term memory [67]. These

results implicate a quite similar molecular mechanism

underlying short and long-term memory between C.
elegans and mammals.

Enhancement of odor repulsion by pre-
exposure
C. elegans avoids repulsive odors such as 2-nonanone and

1-octanol [16]. Pre-exposure to a stimulus usually attenu-

ates behavioral responses [68,69]. Nevertheless, the

avoidance behavior against 2-nonanone is enhanced by

pre-exposure [70�]. Enhancement of avoidance is also

observed in pain sensation in mammals, implicating

the importance of avoidance may be important for

animals to defend themselves from deleterious stimuli.

The enhancement of avoidance to 2-nonanone is inde-

pendent of feeding status during pre-exposure period,

suggesting that this behavior is not associated with food.

Interestingly, dopamine signaling is involved in this

plasticity. The function of D2-like dopamine receptor,

DOP-3, in a single pair of interneuron RIC is crucial for

enhancement of avoidance to 2-nonanone. RIC neurons

intensively synapse onto AVA neurons that mediate for-

ward or backward movement [15,69,71]. Dopamine

modulation of RIC likely regulates AVA neuronal

activity, thereby controlling the enhancement of avoid-

ance and acute movement [70�].

Long lasting memory in C. elegans
In behavioral plasticity described so far, memory is mostly

maintained in the order of minutes or hours. The intri-

guing question is whether long lasting memory exists in C.
elegans as clearly observed in human. Several lines of
www.sciencedirect.com
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evidences suggest that C. elegans indeed possesses long

lasting memory. C. elegans shows olfactory imprinting,

where exposure to attractive odors at the first larval stage

in the presence of food leads to enhancement of attractive

responses to the experienced odors at the adult stage. A

G-protein-coupled receptor SRA-11 expressed in inter-

neurons AIY is required for olfactory imprinting [72].

Bringing up dramatically influences human personality.

The importance of bringing up condition is also observed

in C. elegans. Colony-grown animals exhibited much stron-

ger response to the mechanical stimulus than solitary-

grown animals at adult stage. This enhancement may be

generated by activity dependent process during devel-

opment, where colony-grown animals collided with each

other, leading to strength the response to the touch.

Consistent with this notion, the application of mechan-

osensory stimulation to solitary-grown animals during mid

point of larval development resulted in enhancement of

response to the extent of colony-grown animals [73].

Two types of non-associative plasticity exist for mechan-

osensory (tap) habituation, short-term, and long-term

habituation [69]. Short-term habituation is thought to

occur in the sensory neurons, whereas long-term habitu-

ation that lasts as long as 48 hours is CREB dependent.

The gene expression changes in interneurons by CREB

are required for long-term habituation [17,74]. The invol-

vement of CREB in long-term memory and not in short-

term memory was also observed in other behavioral plat-

forms in C. elegans [67,75]. The relationship between long-

term memory and CREB requirement is likely to be tight.

Conclusion
Recent studies revealed that C. elegans shows a variety of

behavioral plasticity as exemplified in this review. Food

availability and pathogenicity in the past experience

influence behavioral responses to odorants. Salt chemo-

taxis learning is also affected by the past food condition.

These studies should facilitate the understanding of the

mechanisms on learning and memory at molecular and

cellular levels. Intriguingly, the neural circuit of thermo-

tactic plasticity represents dramatic conceptual analogy to

the human brain (Figure 3). The memorized temperature

information stored in AFD (and probably AWC) is trans-

mitted to the interneurons, AIY, AIZ, and RIA, where the

temperature information is associated with the feeding

and/or starvation signals to generate associative learning

(Figure 3). We propose that the neural circuit for thermo-

tactic plasticity is analogous to two functional parts of the

human brain, cerebral cortex, and basal ganglia. Cerebral

cortex encodes working memory that is required for a

temporal storage of information. Similarly, sensory neuron

AFD (and probably AWC) acts as a memory storage device.

Basal ganglia play an important role in learning, emotion

and motivation. Likewise, three interneurons AIY,

AIZ, and RIA, which likely receive neuromodulatory
www.sciencedirect.com 
monoamines in response to feeding state, play a part in

learning (Figure 3). Hence, further study of the neural

circuit underlying thermotactic plasticity should help

unveil the basic principle of the human mind.
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