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e NAO Goal: detect pandemics
o Even if they don't look like previous ones
o Even one that's intentionally "stealth”

e \Nastewater
o Millions of people — one sample

e Metagenomic sequencing
o Doesn't require pre-selecting pathogens
o But most reads won't match a pathogen
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Key question

At a given stage of a future viral pandemic,
what fraction of wastewater metagenomic
sequencing reads match the virus?

RA(1%): relative abundance of virus, when:

o 1% currently infected (prevalence), or

o 1% became infected this week (incidence)
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Key question

e Knowing RA(1%) for many viruses would
help us estimate:
o How deep to sequence?
o What would it cost?
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Collect metagenomic wastewater data

m Data from published studies (via SRA)
Process into per-virus relative abundances
Select target viruses

Collect public health estimates

Estimate RA(1%)
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e RNA (2.8B read pairs)
o SF: Crits-Christoph et al. (2021) |
o LA: Rothman et al. (2021) S EEET
o Ohio: Spurbeck et al. (2023) e
o All during Covid-19

e DNA (4.4B read pairs)
o Copenhagen: Brinch et al. (2020)
o Pre-Covid-19




Determine Relative Abundances

wastewater
metagenomic
sequencing data

|

relative abundance




wastewater

Determine Relative Abundances o e
e KrakenZ2 to assign reads to species |

relative abundance




wastewater
metagenomic

Determine Relative Abundances sequencing data

e KrakenZ2 to assign reads to species |
e Alignment to reference genomes
to remove false positives

relative abundance




wastewater
metagenomic

Determine Relative Abundances sequencing data

e KrakenZ2 to assign reads to species |
e Alignment to reference genomes
to remove false positives

relative abundance

reads matching virus
reads in sample

e relative abundance =
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e \iruses where we can get public health
estimates matching where and when
sequencing samples were collected

disease

— public health data
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e Acute
o Sars-CoV-2
o Influenza A and B
o Norovirus: genogroups | and Il
e Chronic
o HIV
o Herpes viruses: HSV-1, EBV, CMV
o ... eight others
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Estimated prevalence of persistent viral infections
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Estimating RA(1%)

e Chronic: RAp(1%)

o Relative abundance at 1% prevalence
e Acute: RAi(1%)

o Relative abundance at 1% weekly incidence
e Hierarchical Bayesian logistic regression model

Hierarchical Bayesian Model — RA( 1 %)
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Limitations

e Public health estimates include underreporting
factors, which are not very reliable
e Seasonal viruses were suppressed by Covid-19
response
e Studies were generally underpowered for this
purpose
o Deep sequencing (more reads) during a
higher-infection time would allow better
estimates
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Useful for people modeling detection approaches
Let's extend this approach and get better
estimates!
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