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Abstract. One's model of skill determines what one expects from neural network 
modelling and how one proposes to go about enhancing expertise. We view skill 
acquisition as a progression from acting on the basis of a rough theory of a domain in terms 
of facts and rules to being able to respond appropriately to the current situation on the 
basis of neuron connections changed by the results of responses to the relevant aspects of 
many past situations. Viewing skill acquisition in this ways suggests how one can avoid the 
problem currently facing AI  of how to train a network to make human-like generali- 
zations. In training a network one must progress, as the human learner does, from rules 
and facts to wholistic responses. As to future work, from our perspective one should not 
try to enhance expertise as in traditional AI  by attempting to construct improved theories 
of a domain, but rather by improving the learner's access to the relevant aspects of a 
domain so as to facilitate learning from experience. 
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Now that the 20th century is drawing to a close, it is becoming clear that one of the 
great dreams of the century is also ending. Half a century ago it seemed plausible 
to computer pioneers such as Alan Turing and Herbert Simon that a high speed 
digital computer, programmed with rules a.~,d facts, could be made to exhibit 
intelligent behaviour. Thus the field called Artificial Intelligence (AI) was born. 
After fifty years of effort, however, it now seems clear, except to a few die hards, 
that the attempt to use rules and symbolic representations to produce general 
intelligence has failed. ~ Commonsense knowledge, or better, the everyday 
understanding that enables people to cope with entities in the physical and social 
world, has turned out not to be capturable in terms of rules and features. Not only 
has the rationalist claim that intelligence is the product of rules for manipulating a 
symbolic structure representing the theoretical structure of a domain failed as a 

tCf. Paul M. and Patricia S. Churchland, "Could a Machine Think?", Scientific American, January 
1990, pp. 32-37. 
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general theory of intelligence; it cannot even be used to produce expert systems 
that are as good as experts. 

As the commonsense knowledge problem remained unsolved for twenty years, 
some researchers like Terry Winograd abandoned AI; others desperately sought 
some new approach. This hoped for new approach has now appeared. It is 
neural-network modelling - the attempt to use computers to simulate an 
idealized model of the brain-  sometimes called connectionism. As Thomas Kuhn 
has pointed out, in a time of paradigm shift few members of the older generation 
change their minds, but, as one would expect based on Kuhn's observations, a 
new generation of researchers has abandoned symbolic representation in droves 
for this new model of how to use the computer to produce intelligence. It is the 
potential and limitations of this new connectionist architecture as the basis for a 
model of intelligence that we propose to examine. 

We first need an overall view of what the goal of AI research looks like in this 
new mode. On the older view, if AI models are to be smarter than their builders, 
they must express fairly accurately the designer's theory of the domain and then 
use superior computational abilities to draw better inferences than humans do 
from this theory. On the new view, the model must have computational abilities 
roughly comparable to those of the modeller and be the product of greater 
knowledge. Like conventional models, artificial neural networks require that the 
designer choose the features and state variables to be used to represent a 
situation, as well as their values in each specific situation to be considered. Since 
the values of these variables can be represented as activity patterns over input 
neurons in a variety of ways, a particular representation must also be chosen. 
Furthermore, if the network is to learn from experience, the output correspond- 
ing to each input situation must be specified in terms of certain features and the 
values of certain variables, and these as well as their representation as patterns of 
activity over output neurons, must be selected. If standard supervised learning is 
sought as knowledge, the modeller then selects a certain number of exemplary 
situations to be used for training the network. Each of these situations determines 
an input-output pairing. A learning rule is then applied that adjust various 
parameters of the network, such as connection strengths, until the network 
produces the desired outputs for the selected inputs. The initial conditions of the 
adjustable parameters of the artificial neural network, together with the learning 
rule, the cases chosen for training purposes, and the means of representing the 
input and output, determine the ultimate values of the parameters of the trained 
network. 

If simulated on a computer or implemented via an analog device, this trained 
network will produce an output for each new input. The most striking difference 
between this kind of modelling and the more conventional sort is the fact that the 
modeller provides a history of training inputs and the network organizes itself by 
adjusting its many parameters so as to map inputs into outputs, i.e., situations 
into actions, without the model builder providing any rules derived from a theory 
of the domain. 

Thanks to connectionism with its freedom from the atomistic and rationalist 
assumptions underlying conventional AI, there has blossomed a new interest in 
phenomena that the older AI, with its model of step-by-step problem solving, had 
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tried to ignore, notably learning and pattern recognition. Since programming 
computers to be intelligent no longer requires developing a theory of some skill 
domain, but rather consists in writing an algorithm that enables the computer  to 
acquire skill in such a domain without having to have a theory of it, we find a new 
confluence of interest in neural-net models of the mind and phenomenological 
models of skill acquisition. 

In 1986 we proposed a model of skill acquisition that cried out for connectionist 
implementation. 2 On our model, skill acquisition usually begins with the student 
learning and applying rules for manipulating context-free elements. This is the 
element of truth in rationalism. Thus a chess beginner must follow strict rules 
relating such features as centre control, material balance, etc. After  one begins to 
understand a domain, however,  one sees meaningful aspects, not context-free 
features. Thus a more experienced chess player sees context-dependent  aspects 
like unbalanced pawn structure or weakness on the king's side. A further stage of 
proficiency is achieved when, after a great deal of experience, one is able to see a 
situation as having a certain significance tending towards a certain outcome,  and 
certain aspects of the situation stand out as salient in relation to that end. Given a 
certain board position, for example, chess masters conclude after a few seconds of 
examination that the issue is to attack or defend the king-side. Finally, after even 
more experience - thanks to the brain configuration produced by all the past 
experienced situations - an expert simply sees immediately what must be done. 
The chess master, for example, not only quickly sees the issues in a position; the 
right move just pops into his head. There is no reason to suppose the beginner's 
features and rules, or any other  features and rules, play any role in such expert 
performance.  One can, of course, recall the rules one once used and act on them 
again, but then one's behaviour will be halting and clumsy just as it was when one 
mastered the rules as an advanced beginner. 

Seen in the context of the emerging new connectionist paradigm, our five-stage 
model of skill acquisition and our description of intuitive expertise accounted for 
the failure of symbolic AI and rule-based expert systems. It also suggested that 
neural-network simulation could produce some modicum of intelligent behav- 
iour. But,  at the same time, our account lead to a pessimistic conclusion 
concerning the possibility of connectionist AI. Although the neural-net approach 
was not based on the rationalist philosophical mistake of passing over yet 
presupposing skill and perception, as the symbolic one was, it seemed to us, 
nonetheless, that neural net simulation, just because it was holistic and open to all 
possible ways of associating input with output patterns, would flounder on a 
variation of the problem of commonsense understanding that had led to the 
abandonment  of symbolic AI. 

All neural-net modellers agree that for a net to be intelligent it must be able to 
generalize, that is, given sufficient examples of inputs associated with one 
particular output ,  it should associate further inputs of the same type with that 
same output.  The question arises, however: What counts as the same type? The 

2For a more detailed account of the stages of skill acquisition and the implications of this account for 
cognitive science, cf. Mind Over Machine: The Power of Human Intuition and Expertise in the Era of 
the Computer, Hubert and Stuart Dreyfus, Free Press, revised paperback edition, 1988. 
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designer of the net has in mind a specific definition of " type"  required for a 
reasonable generalization, and counts it a success if the net generalizes to other  
instances of this type. All the "continue this sequence" questions found on 
intelligence tests, for example, really have more than one possible answer but 
most human beings share a sense of what is simple and reasonable and therefore 
acceptable. But when the net produces an unexpected association can one say it 
has failed to generalize? One could equally well say that the net has all along been 
acting on a different definition of " type"  and that that difference has just been 
revealed. 

For  an amusing and dramatic case of creative but unintelligent generalization, 
consider the legend of one of connectionism's first applications. In the early days 
of the perceptron the army decided to train an artificial neural network to 
recognize tanks partly hidden behind trees in the woods. They took a number of 
pictures of a woods without tanks, and then pictures of the same woods with tanks 
clearly sticking out from behind trees. They then trained a net to discriminate the 
two classes of pictures. The results were impressive, and the army was even more 
impressed when it turned out that the net could generalize its knowledge to 
pictures from each set that had not been used in training the net. Just to make sure 
that the net had indeed learned to recognize partially hidden tanks, however,  the 
researchers took some more pictures in the same woods and showed them to the 
trained net. They were shocked and depressed to find that with the new pictures 
the net totally failed to discriminate between pictures of trees with partially 
concealed tanks behind them and just plain trees. The mystery was finally solved 
when someone noticed that the training pictures of the woods without tanks were 
taken on a cloudy day, whereas those with tanks were taken on a sunny day. The 
net had learned to recognize and generalize the difference between a woods with 
and without shadows! Obviously, not what stood out for the researchers as the 
important  difference. This example illustrates the general point that a net must 
share size, architecture, initial connections, configuration and socialization with 
the human brain if it is to share our sense of appropriate generalization. 

There  was also a further problem. The purely associationistic pattern recog- 
nition model of learning, adopted by the connectionists, could not explain expert 
consensus. That  is, the connectionist model of the acquisition of the ability to 
behave intelligently failed to account for the important fact that even though each 
expert  has been exposed to different cases of success and failure in different 
sequences, experts tend to agree in their response to a given situation. 

To address the above two problems we need to again ask the question: How 
does an expert  cope intelligently with a domain? Only when we understand this 
will we have a basis for speculating about the possibilities and limitations of 
artificial experts produced by neural networks. 

Clearly, experience improves coping performance.  In considerably lower 
animals it is fairly certain that trial-and-error experience directly produces 
synaptic and related brain changes causing raw stimulae detected by the sense 
organs to map into better  and better  physical coping responses. The changes that 
occur during learning almost certainly cannot be even approximately described at 
some higher level of abstraction such as belief, goal, or mental-domain-model 
modification. 



22 Hubert L. Dreyfus and Stuart E. Dreyfus 

Matters are more complicated and controversial, however, when it comes to 
skilled human behaviour. On the one hand, our trained-in and imitative social 
comportment and the movements of skilled physical labourers such as carpenters 
are probably best seen as much more subtle than, but analogous to, lower 
animal's coping behaviour. We neither have, nor need a mental model of our 
social or physical vocational skill domains in order to learn through trial-and- 
error and instructional example to act acceptably and even skillfully when, for 
example, involved in carrying on a conversation or hammering in a nail. 
Involvement in real situations, however, does seem crucial to this effortless and 
usually successful coping behaviour, for if we are given a verbal description of the 
conversational or hammering situation what, after conscious deliberation, we say 
we would do is unreliable and even varies with differently worded descriptions of 
the same situation. 

Our detached "problem-solving" comportment when we are beginners in a 
new and largely cognitive skill domain or when we are faced with entirely novel 
situations in cognitive domains in which we have already acquired skills, on the 
other hand, certainly seems to be at least approximately describable at the 
abstract level of reasoning about the situation based on a theory of the domain. 
What a novice decides he would do when a situation is described to him in terms of 
what he has been taught are the salient features of such a situation is usually what 
he really would do in a situation with these features. 

Most of the vocational activities of so-called knowledge workers fall between 
these extremes of novice deliberation, on the one hand, and purely intuitive 
manual skills, on the other. It is here that modelling is most potentially rewarding 
but at the same time most controversial. Business persons, surgeons, teachers 
etc. cope fairly effortlessly and, most of the time, successfully with situations that 
are hardly novel, yet not identical with one previously experienced. They do so, 
particularly if time is short, with no awareness of detached problem solving, and 
even when time permits they more often deliberate about the relevance of their 
prior experience and the possibility of overlooked alternative perspectives or 
available facts than about the rules and principles underlying their skill. 

At least four models of knowledge worker's coping behaviour have been 
proposed: The old symbolic AI view holds that unconscious problem solving, not 
different in principle from that consciously used in novel situations, takes place 
and that, while hard to elicit, a description at the abstract level of a theory of the 
skill domain is possible and desirable. 

A second extreme position claims that an experienced and skilled knowledge 
worker's cognitive processing is analogous with that of skilled physical labourers. 
That is, it is a brain process resulting from trial-and-error and from instructional 
example that is triggered by involvement in real situations and that cannot be 
described at any domain-theory level of abstraction. 

At least two distinguishable and more plausible explanations of expertise lie 
between these extremes. View three (the case-based approach) holds that, in the 
case of experts, tens of thousands of experiences (somewhat abstracted descrip- 
tions of situations and associated successful or unsuccessful coping behaviours) 
are stored separately in memory, and situations similar to the one currently 
encountered are accessed and used to determine associated behaviour. 
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A fourth position, the one we hold, claims that early formal learning 
determines how subsequent experiences will modify involved behaviour and 
plays an important role in the ultimate level of skill attained, yet is unrecogniz- 
able, in principle as well as practice, in the brain processes of the skilled expert. 
Rather, after considerable experience in a domain, further experience produces 
synaptic and related neurophysiological changes not describable at a higher level 
of abstraction, although the neurophysiological state that these experiences 
modify is itself the product of the abstractly describable rule-based, theory-driven 
detached problem-solving behaviour taught to the beginner. Acquiring expertise 
according to this model, consists of a gradual brain modification, undescribable at 
any higher level of abstraction, that nonetheless bears the imprint of early theory- 
based learning. 

Let us examine and evaluate the implications of these four views of human skill 
acquisition. Because they are most common, we shall focus on situations where 
experienced experts face situations similar to, but not identical with, ones 
previously studied or experienced. 

If one holds extreme view number one, that expert behaviour is the result of 
problem-solving based on a theory of the domain, conventional AI seems 
appropriate. The problem here, of course, is what domain theory to incorporate. 
Since experts are rarely, if ever, conscious of running mental models, the attempt 
to elicit the expert's theory of the domain turns out to be extremely frustrating. 
This phenomenon, among others, makes the picture of expertise explicitly or 
implicitly held by expert-system designers and by most AI workers exceedingly 
implausible, although it is not provably mistaken. Other facts calling this picture 
into doubt are 1) the extreme speed and ease with which experts, as opposed to 
problem-solving beginners, cope with their environment, 2) the failure of even 
the most complicated expert systems (which rely on an inference-based domain 
theory rather than a dynamical-system-based one) to perform at true expert level 
in domains where quality of performance can be verified, and 3) the established 
ability of artificial neural networks (and therefore presumably also of brains) to 
behave intelligently, admittedly currently at much less than expert level, without 
their computational process being interpretable as the application of a domain 
theory. Even Herbert Simon, considered by many the father of conventional 
rule-based AI has, after careful observation of the phenomenon of expertise, 
discarded the problem-solving model in favour of one based on tens of thousands 
of remembered experiences. 

Suppose, at the other extreme represented by position two, that the skill and 
expertise of a knowledge worker is solely the product of synaptic and other brain 
changes produced during successful and unsuccessful experiences and that the 
processing of input stimulae leading to output behaviour allows no abstract level 
of interpretation. Might the synapses and other parameters of an artificial neural 
net be modified by reinforcement during successful responses and by inhibition 
during unsuccessful ones so as to cause the net to produce expert-level responses 
when given new situations that are similar to, but different from, those used 
during training? 

Efforts in this direction are continuing and it is too early to assess their success. 
The problem, for this approach, however, is that an artificial neural network 
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involves so many parameters adjustable during learning that even the learning of 
correct responses to tens of thousands of cases fails to determine uniquely these 
parameters, and hence the responses to other inputs. Given the same training 
cases, details such as the initial configuration of the artificial net before learning is 
begun, the representation in terms of neuronal activity of the input and output, 
the parameter modification procedure during learning, etc. can yield final trained 
nets agreeing on the training cases but differing completely in their responses to 
new inputs. If no two nets generalize similarly, there is little reason to trust any 
particular one's responses to new cases. The few success stories currently 
circulating in the artificial neural network community involve selecting and 
publicizing, out of many experimental networks using different architectures and 
training parameter values, the one that performed best on a set of additional test 
cases. 

Position three - the case-based approach - avoids the problem of the first two 
views. Suppose that, as Herbert Simon has proposed, experts remember tens of 
thousands of situations and associated successful responses and use these to guide 
behaviour in new situations. Suppose further that one can represent these cases in 
terms of features and the values of variables and, after representing the present 
situation in a like manner, prior situations can be identified that are, by some 
measure, similar to it. Then, if the responses of these most-similar cases can 
somehow be combined to produce a response (or, if the responses suggested by 
these most-similar cases can each be separately evaluated by some criterion), 
stored experience can be used to generate the kind of intelligent output that 
conventional AI models seek to produce. 

The above supposition, however, leaves unanswered the question of what 
measure of similarity to use, how to combine possibly contradictory responses 
associated with similar cases, and what criterion to use if several possible 
responses are to be compared. Only if experts responded to situations in the 
manner described above is there reason to believe that answers exist to the above 
questions. Even then, since experts are unaware of using such a memory-based 
procedure, the modeller would have to guess at answers or else plumb the 
expert's unconscious. These practical roadblocks, plus this model's inability to 
explain the almost instantaneous and effortless behaviour of involved experts, as 
well as the fact that artificial neural networks and apparently also the brain do n o t  

store experiences separately and access them using a similarity measure when 
they learn from experience, suggest we should reject as misguided this expla- 
nation of expertise and this proposal for modelling it. 

Of the four speculations about how knowledge workers learn to cope 
successfully, only one remains. While it is related to the above pure associative 
neural network model that had to be rejected due to its unpredictable generali- 
zation behaviour, it differs in important respects. Suppose that students of a skill 
domain initially approach the subject by means of a model of the domain. If a 
large group of future experts receive similar training, their ability and desire to 
identify certain important conceptual considerations, to assess these consider- 
ations, and to combine these assessments in order to produce predictions and 
decisions will be similar. At this point, rather than their brains being the t a b u l a  

rasa  assumed at the beginning of the associative training used in current neural 
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network models, there may well be significant similarities in the synaptic 
connections of all of these learners' brains. Later, when experience-based 
learning begins to modify the neural connections, and interpretation of the brain 
activity in terms of a domain theory thus ceases to be valid, the network 
connections at the neural level will certainly differ from expert to expert, but 
rarely by so much as to lead to totally different responses to a particular situation. 
Thus the arbitrary nature of generalization from learned cases to outputs for new 
cases might be avoided. 

The above phenomenology of skill acquisition and the associated research 
program it entails for neural-net workers, while not a ground for optimism 
concerning the achievement of general artificial intelligence in the next century, 
does leave open the possibility - though by no means the certainty - that neural 
network research will produce artificial expertise in isolated domains. There is no 
obvious theoretical reason why neural network modelling could not be successful 
in domains such as chess playing, where basic human biological needs and desires 
play little or no role and imitative and trained-in human interpersonal social 
behaviour is largely irrelevant. The practical problems, however, are immense. 
No one currently has any idea how the brain, operating at the neuronal level, 
supports the sort of conceptual learning and thinking of which, as beginners, we 
are consciously aware. The current serial AI computer programs that might be 
said to stimulate the beginner's domain theory-based behaviour do so using a 
conventional program with no commitments concerning neural-level implemen- 
tation. But if one is building an artificial neural network that is ultimately to 
modify its synaptic connections based on concrete experience, but initially is to 
instantiate conceptual understanding, one cannot avoid this issue. 

While an artificial brain might not need to support what could be recognized as 
conceptual thinking in exactly the same way as do o u r  brains, the conceptual 
understanding would need to be as rich and subtle as those achieved during 
human learning if further case-based experience is to produce expert or higher- 
level behaviour by means of synaptic and other modifications. Since most 
concepts of real-world interest do not admit of definition in terms of necessary 
and sufficient conditions, it is probably the case that the possibility of conceptual 
thinking about real-world situations emerges only out of real-world contextual 
experience. For example, as the learner experiences or studies many instances of 
weakness on the king side embedded in various contexts, each of these 
experiences producing activity patterns in the brain. The brain's pattern of 
activity when the subject consciously assesses a situation as weakness on the king 
side, then probably resembles what is common to its activity during each of these 
concrete experiences. This commonality might be called the concept "weakness 
on the king side" and it may well admit of no higher-level abstract description. If 
this is so, the neural network designer would need to model the process of the 
emergence of concepts and their combination to produce the behaviour of the 
learner. Then, and only then, should the process of synaptic changes based on 
massive further experience typical of current artificial neural network models be 
employed. 

This very incomplete discussion of the issues that must be faced by neural 
network modellers if the fourth view of coping skill is correct is intended only to 
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suggest the immensely difficult nature of the task of capturing within an artificial 
neural network the learning mechanisms of a human being. Certain currently 
proposed "connectionist" models, where concepts are represented by individual 
artificial neurons and connection strengths are supposed to model relationships 
among concepts, fail even to begin to deal with the realities mentioned above and 
so offer little hope of acquiring expertise. 

Conclusion 

As any sports broadcast or financial newsletter shows, the computer can and does 
now provide us access to an almost unlimited number of facts gleaned from past 
data. Certain of these facts, in some situations, hold the long-term potential for 
improving performance. Initially, however, information that we never before had 
available can only either be ignored as we intuitively cope, based on past 
experiences where these facts were lacking or, worse, cause us to adopt newly 
invented rules and procedures to incorporate them in detached problem solving, 
thereby forsaking our intuitive expertise. Given the strong potential for initial 
regress that a glut of new information entails, the immediate challenge for the 21st 
century, if we wish to exploit the computer's remarkable data-processing power 
to enhance expertise, is to identify, in each skill domain, those computer- 
generated facts and displays having the property that our intuitive coping ability 
improves after sufficient experience with real situations where these computer 
outputs comprise part of the situation. Our ultimate challenge is to develop a 
theory and accompanying experimental techniques that enables us to produce, in 
any domain, facts and displays that improve our intuition. To pursue this research 
it is essential that our theory be in conformity with the phenomena of skill 
acquisition and expertise, that is, that it free itself from the currently entrenched 
rationalistic view that inferential reasoning based on a mental model or domain 
theory underlies all understanding and successful coping. 
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